Mean value theorems for automorphic $L$-functions
نویسندگان
چکیده
منابع مشابه
Harmonic functions via restricted mean-value theorems
Let f be a function on a bounded domain Ω ⊆ R and δ be a positive function on Ω such that B(x, δ(x)) ⊆ Ω. Let σ(f)(x) be the average of f over the ball B(x, δ(x)). The restricted mean-value theorems discuss the conditions on f, δ, and Ω under which σ(f) = f implies that f is harmonic. In this paper, we study the stability of harmonic functions with respect to the map σ. One expects that, in gen...
متن کاملMean-value Theorems for Multiplicative Arithmetic Functions of Several Variables
Let f : Nn → C be an arithmetic function of n variables, where n ≥ 2. We study the mean-value M(f) of f that is defined to be lim x1,...,xn→∞ 1 x1 · · ·xn ∑ m1≤x1, ... , mn≤xn f(m1, . . . , mn), if this limit exists. We first generalize the Wintner theorem and then consider the multiplicative case by expressing the mean-value as an infinite product over all prime numbers. In addition, we study ...
متن کاملSome Mean Value Theorems for the Riemann Zeta-function and Dirichlet L-functions
The theory of the Riemann zeta-function ζ(s) and Dirichlet L-functions L(s, χ) abounds with unsolved problems. Chronologically the first of these, now known as the Riemann Hypothesis (RH), originated from Riemann’s remark that it is very probable that all non-trivial zeros of ζ(s) lie on the line < s = 12 . Later on Piltz conjectured the same for all of the functions L(s, χ) (GRH). The vertical...
متن کاملLectures on automorphic L-functions
PREFACE This article follows the format of five lectures that we gave on automorphic Lfunctions. The lectures were intended to be a brief introduction for number theorists to some of the main ideas in the subject. Three of the lectures concerned the general properties of automorphic L-functions, with particular reference to questions of spectral decomposition. We have grouped these together as ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: St. Petersburg Mathematical Journal
سال: 2008
ISSN: 1061-0022
DOI: 10.1090/s1061-0022-08-01024-8